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This paper introduces photonic topological insulators (PTIs), drawing parallels with electronic
systems like the Integer and Quantum Spin Hall Effects. Key concepts include the Berry phase,
Chern number, and bulk-edge correspondence. We explore the translation of topology to photonic
systems, highlight experimental realizations, and discuss potential applications of PTIs.

I. INTRODUCTION

In this term paper we would like to introduce photonic
topological insulators and draw parallels with topologi-
cal insulators. Topological insulators (TTs) are a class
of materials that have revolutionized our understanding
of condensed matter physics. These systems exhibit a
unique duality: while their bulk is insulating, their edges
or surfaces host conducting states that are robust against
disorder and defects. This phenomenon is rooted in the
system’s topology, a branch of mathematics that charac-
terizes global properties of systems insensitive to small
perturbations. The quantum Hall effect (QHE) serves
as the archetypal example, where the breaking of time-
reversal symmetry (TRS) by a magnetic field results in
edge states protected by the quantized Chern number, a
topological invariant.

Recently, the concepts underlying TIs have tran-
scended condensed matter physics and found exciting ap-
plications in photonics, leading to the advent of photonic
topological insulators (PTIs). These systems mimic the
behaviour of electronic TIs but operate with light instead
of electrons. Unlike traditional photonic materials, PTIs
can support unidirectional edge modes that are immune
to backscattering, even in the presence of imperfections
or disorders. This property holds immense potential for
applications in photonic circuits, robust signal transmis-
sion, and quantum technologies.

In PTIs, time-reversal symmetry breaking is typically
achieved using gyromagnetic materials in the presence
of an external magnetic field. These materials exhibit
magneto-optical effects, creating asymmetric propaga-
tion of light that mirrors the behaviour of electrons in the
QHE. The gyromagnetic response enables the formation
of one-way edge states analogous to those in electronic
TIs, but without requiring a Fermi surface or electronic
charge.

This paper introduces the fundamental principles
of topological insulators and their extension to pho-
tonic systems, known as photonic topological insulators
(PTIs). It begins by reviewing Bloch’s theorem and its
application in both electric and photonic systems. Fur-
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ther, we emphasize the importance of the topology in
band theory and the calculation of the chern no. We
later transition to the quantum Hall effect (QHE) as a
foundational concept, including the generation of Lan-
dau levels, edge state formation, and their contribution
to quantized conductivity. The discussion highlights the
role of the Chern number as a topological invariant and
provides an overview of the mathematical framework for
its calculation.

The transition to PTIs emphasizes key differences be-
tween electronic and photonic systems. Unlike elec-
trons, photons are charge-neutral and lack intrinsic non-
reciprocity, requiring gyromagnetic materials to break
time-reversal symmetry (TRS) and achieve non-trivial
topological phases. These differences, alongside the
unique properties of photons, are explored to illustrate
how photonic systems can realize analogues of QHE-like
behaviour.

Before delving into PTIs, the paper introduces topo-
logical insulators more broadly. These materials ex-
hibit edge states that are protected by topology. In
electronic systems, these states are helical and TRS-
protected, forming counterpropagating channels immune
to non-magnetic scattering. In QHE systems, edge states
arise from TRS breaking and the non-trivial topology
of the bulk, which leads to robust, unidirectional edge
modes.

Building on the understanding of QHE, the paper gives
a brief overview of the quantum spin Hall effect (QSHE),
where TRS is preserved. This transition sets the stage
for PTIs, which extend these principles to photonic sys-
tems. The mathematical framework underlying Chern
PTIs, including the calculation of the Chern number, is
briefly outlined, showing how photonic band structures
exhibit topologically protected states. The role of gyro-
magnetic materials in creating anisotropic permeability
and breaking TRS in photonic systems is also discussed.

Finally, the significance of PTIs in modern photonics
is highlighted, with potential applications ranging from
robust optical communication to enhanced light manipu-
lation. The comparison between Chern PTTs (analogous
to QHE) and valley PTIs introduces a broader context
for topological photonics.

This framework will allow us to establish the connec-
tion between these various topological phenomena, set-
ting the stage for a more detailed exploration of their ap-



plications and implications in photonics and beyond. By
combining insights from condensed matter physics and
photonics, PTIs exemplify the cross-disciplinary nature
of topological science, paving the way for a deeper under-
standing of light-matter interactions in structured mate-
rials.

II. SOME BASIC CONCEPTS

Before proceeding with this topic in detail, we will dis-
cuss some basic concepts necessary to understand the
later section.

A. Berry phase and Chern number

We talk about the Berry phase in the context of a quan-
tum system when the Hamiltonian of the system depends
on some adiabatically varying parameter. When the state
of the system varies adiabatically with the parameters on
which it depends, other than the dynamical phase, an ad-
ditional geometric phase arises, which we call the Berry
phase. The Berry phase depends only on the geometry
or path it takes in the parameter space. Consider a sys-
tem driven by the Hamiltonian H that depends on the
parameter k which is varying in k-space. The eigenvalue
equation is as follows:

H(k) [{n(k)) = En(k) [{n(k)) . (1)

The parameter k varies ‘adiabatically’ so that there is
no crossover between the two states of the system. The
Berry connection (or Berry vector potential) for the nt"
state is defined as

An (k) = i (Yn (k)| Vi|¢n(k)) (2)

and the Berry curvature is defined as

= /l dk - A, (k) 3)

where [ is the smooth curve traced by the evolution of the
parameter k in k-space. The Berry curvature is defined
as

Q, (k) =V x A, (k) (4)

We mostly evaluate the Berry phase over a smooth closed
loop. By using Stokes’s theorem, we can write the Berry

phase as
fyn:]l{dk-An(k:)://st-Qn(k) (5)

where s be the surface enclosed by the loop [ and dS be
the differential surface element over surface s. We define
the Chern number as

Cn:%//sds'ﬂn(k) (6)

FIG. 1. The 2D BZ is equivalent to the Torus, thanks to the
periodic gauge choice of u, k(x), which results in periodicity
of |Yn. k) over k in momentum space (BZ). (taken from [4])

One can note that under local gauge transformation on
the state of the system i.e., [1h,(k)) — eX®) |3, (k)),
the Berry phase is equal up to modulo 27 due to the single
valuedness of e’X(¥) The Berry curvature and Chern
number are invariant under such transformation.

B. Band theory in lattice

The concept of band structure in a 2D periodic lat-
tice is essential for the discussion of the topology of 2D
photonic crystal. For an electronic system in a periodic
potential, the Hamiltonian H (x, p) will obey spatial pe-
riodic condition i.e., H(x + a;,p) = H(x,p), where {a;}
are the lattice vectors. By the Bloch’s theorem, due to
the translational invariance of the system, the eigenstate
of the system is given by

V() = e* %y, 1 (z). (7)

where n is the band index, k is the crystal momentum
in the 1st Brillouin zone (BZ) and the function w,, (x)
is periodic as the Hamiltonian. The eigenvalue equation
of this Hamiltonian is

o ‘wn,k> = En,k ‘wn,k> (8)

For 1D periodic lattice, the 1st BZ is [—7/a,7/a) where
a is the periodicity of the crystal. For a 2D square lattice,
itis [-7/a,7/a)®[—7/a, 7 /a) where a be the periodicity
of the crystal in both x and y direction. Let {b;} are the
reciprocal lattice vector, then any momentum g not in 1st
BZ can be written as ¢ = k+0b, for k in 1st BZand bis a
reciprocal lattice vector. Taking periodic gauge choice of
un k() such that [¢, q) = |¥n.k), we can think the 1st
BZ, in 1D case, is a ring and in 2D case, its a torus. The
energy eigenvalue E,, , defines n'" energy band disperses
with k in the 1st BZ and all the eigenvalues collectively
form a band structure of the system. The gap between
two energy bands is called a band gap. The topological
properties of these energy bands and the opening and
closing of the band gap play a major role in topological
insulators.



1. Topology of band structure

Topology concerns quantities that are preserved under
continuous deformations of objects. A transformation
is “continuous” if it does not cause any sharp cuts or
tears in the object. The number of holes (i.e., genus)
in a closed surface is an example of a topological invari-
ant. We apply a similar concept in the band structure
of the periodic lattice. Let the Hamiltonian depend on
some tunable parameters. Varying the parameters, we
can continuously deform the band structure of the sys-
tem. The gapped band structures which can be continu-
ously deformed into one another without closing the gap
are topologically equivalent. Such an equivalent class
can be characterised by a topologically invariant quan-
tity, the Chern number. In the 2D topological insulator,
the Chern number of nt" band is calculated over the 1st
BZ. i.e.,

C, = % //BZ d’k Q, (k) (9)

where A, (k) = @ (Upk|Vi|unk) and Q,(k) = Vi X
A, (k). The Chern number always takes an integer value.
If Berry curvature A, (k) is continuous over the BZ, then
the Chern number is zero. One can get that by Using
Stokes’s theorem in the Chern number calculation as

1
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It is important to note that if the system has time-
reversal symmetry (TRS) then Q,(—k) = —€,(k), the
Chern number, which is an integral of Berry curvature
Q,(—k) over the BZ, vanishes. So breaking of time-
reversal symmetry leads to a non-trivial Chern number.

A topological phase transition is when the topological
invariant quantity of the system changes. this transition
happens when the band structure shifts from one equiv-
alence class to another, leading to a change in the Chern
number. Consequently, during a topological phase tran-
sition, a gap-closing scenario occurs in the band struc-
ture. This has significant implications for the formation
of edge modes.

2. Edge modes and Bulk edge correspondence

Edge modes are of great interest in the Quantum Hall
effect. The gapless edge mode arises in the interface re-
gion of two domains of different topological invariance in
the bulk. As there is a sudden change in the topological
invariant quantity (the Chern number) across the junc-
tion, the topological phase transition takes place. During
a topological phase transition, a gap-closing scenario oc-
curs in the interface region, leading to the emergence of
gapless edge modes that are spatially localized at the in-
terface region. For an electronic system In the case of a
TRS-breaking system (e.g., quantum Hall system), the

edge modes are ‘chiral’ i.e., they have distinct propagat-
ing directions along the edge. Later we will see that in
the case of the quantum Hall system, the edge states have
a unidirectional conduction of electrons. It is important
to note that the difference between the number of right-
moving and left-moving edge states doesnot change. It
depends on the topological properties of the bulk states
and is equal to the difference between the chern number
of the bulk state of the two domains. This is called Bulk
edge correspondence. Since the system can only change
the Chern number through a phase transition when gap
closing happens in the band structure, any small change
in the band structure in the bulk won’t affect the edge
modes. That’s why the chiral edge states are said to be
‘topologically protected’.

III. TOPOLOGICAL INSULATORS IN
ELECTRONIC SYASTEM

Before delving into Photonic Topological Insulators
(PTIs), it is essential first to understand the basic con-
cepts of topological insulators. These materials exhibit
helical edge states that are protected by time-reversal
symmetry (TRS). These helical states, form channels
that are immune to backscattering or impurities, thus
offering robust conduction along the edges.

In this section, we will provide a concise overview of the
quantization of the Hall effect and the formation of edge
states, focusing on the topological invariant of the QHE,
which is given by the Chern number. Following this, we
will draw parallels between electronic systems and pho-
tonic crystals, highlighting the topological manifestations
in both. Without going deeply into mathematics, we will
highlight the analogous calculation of the Chern number
for Chern PTIs and how it informs our understanding of
these systems.

A. Integer quantum hall effect (IQHE)

The integer quantum Hall effect (IQHE) has garnered
significant attention over the last few decades. The IQHE
was discovered in 1980 by Klaus von Klitzing, who ob-
served quantized Hall conductance in a two-dimensional
electron gas subjected to a strong magnetic field at low
temperatures. The classical Hall effect is a condensed
matter experiment where a transverse potential is ob-
served when a uniform electric field is applied across a
thin sample along with a mutually perpendicular mag-
netic field. The resulting Hall resistivity is given by:

B 1
Pey = — = —, (10)

ne  Ogy

where p,, and o, is the off-diagonal component of the
resistivity tensor and conductivity tensor respectively, B
is the magnetic field and n being the number density of
charge carriers. Later, it was observed by von Klitzing



(1980) that at very low temperatures and high magnetic
fields, o, exhibits plateau-like behaviour with increasing
magnetic field. The quantized Hall conductivity is given
by:

e2

Oxy = %V (11)

where v € Z, represents the total number of filled Landau
levels. For the IQHE, the Hamiltonian of a 2D electron
gas in the presence of a magnetic field in the z-direction
is given by

(p+eA)?
2m

H = (12)
Taking the Landau gauge choice A = zBgy and solving
the eigenvalue equation, the energy eigenvalues are:

By = (n+) s

where wg = %. The E,, defines the n'* Landau level.
The explicit wavefunctions depend on two quantum num-
bers, n € N and k, € R, and are given by:

 (atkyl%)?

U (z,y) ~ e™VH, (z+ k%) e A 14
Ry y'B

where H,, are the Hermite polynomials and I =
\/h/(eB) is the magnetic length. Now, in the presence of
an electric field applied in the z-direction, the Hamilto-
nian can be solved similarly, leading to the energy band:

e?F?
L 1y
2mw%

En,ky = hwp <n + ;) — eEk‘leB +
Comparing the two energy spectra, we see that the degen-
eracy present in the absence of the electric field is lifted,
and the energy now depends on the value of k,. Because
the energy depends on the momentum k,, it implies that
states now drift in the y-direction. The group velocity is
proportional to the energy gradient with respect to k.

Something special happens at the edge of the 2D sam-
ple in a finite sample in a quantum Hall setup. A classical
picture would give more intuition. For a fixed magnetic
field perpendicular to the sample, all electrons move in a
cyclotron orbit in the bulk. Near the edge of the sample,
the orbits must collide with the boundary resulting in a
skipping motion in which the particles move only in one
direction along the one-dimensional boundary. This is
the classical picture of the formation of the chiral edge
states in the system. (see fig. 2)

1. Topology in IQHE

As discussed before, the topology of the band structure
plays a major role in the quantization of Hall conductiv-
ity. It is noted that the Chern number corresponds to nt"
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FIG. 2. Figure shows the cyclotron motion of the electron
in the bulk of the sample and a skipping orbit motion in the
edge in the presence of a perpendicular magnetic field.

Landau level is unity. The origin of the nontrivial Chern
number is due to the breaking of the TRS of the system
by applying an external magnetic field. Further, the to-
tal Chern number, summed over all occupied bands in
the Quantum Hall (QH) system is invariant. By TKNN
formulation, using the Kubo formula, it is demonstrated
that v in quantized Hall conductivity o, is equal to this
total Chern number, which is the same as the total num-
ber of filled Landau levels.

The edge modes arises when there is a topological
phase transition. In the QH system, the edge states arise
at the boundary region of the finite sample. Note that
vacuum is a trivial insulator i.e. the Chern number van-
ishes, but the quantum Hall state has a nontrivial Chern
number v. Consequently, the edge states arise due to
the topological phase transition across the edge (See fig.
3). The number of edge states is equal to the difference
between the Chern number across the edge which is the
same as the total Chern number. As the group velocity is
proportional to the gradient of energy with respect to k,
from the dispersion relation in Fig. 3 it is clear that the
edge state has unidirectional group velocity. So the edge
modes have chiral property, that is they can propagate
only in one direction along the boundary not the oppo-
site direction. Because of the chiral nature of the edge
modes, edge currents are immune to backscattering.

B. Quantum Spin Hall Effect

We would like to touch upon the quantum spin hall
effect. This is just a brief overview of the workings of this
system. It does not include any mathematical framework.
It is simply introduced to give the reader an intuitive idea
of spin PTIs which would later be touched upon.

Unlike the integer quantum Hall effect (IQHE), where
time-reversal symmetry (TRS) is explicitly broken by ap-
plying a magnetic field, TRS is preserved in the quantum
spin Hall effect (QSHE). The discovery of QSHE materi-
als was motivated by practical challenges associated with
QHE, such as the requirement of high magnetic fields and
very low temperatures, which limit technological appli-
cations.
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FIG. 3. Figure (a) shows the unidirectional edge state (skip-
ping orbits in the classical picture) in the boundary of the
sample. Figure (b) shows the gapless energy dispersion rela-
tion contributing to the conduction along the edge. (taken
from [1])
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FIG. 4. Figure (a) shows the edge state in the boundary of
trivial and nontrivial topological insulators. A pair of counter-
propagating channels with opposite spins arise in the edge.
(taken from [1])

From the previous discussion, we saw how breaking
TRS in QHE leads to a non-zero Chern number, which
characterizes the topology of the bulk. However, the
preservation of TRS in QSHE means the Chern num-
ber is zero, as contributions from spin-up and spin-down
states cancel each other out. To capture the non-trivial
topology of QSHE systems, another topological invari-
ant, the Z, invariant, was introduced.

On the edge, QSHE systems exhibit helical
modes—pairs of counter-propagating channels with
opposite spins, unlike the chiral modes of QHE. These
helical modes preserve TRS: a forward-moving spin-up
channel is paired with a backwards-moving spin-down
channel. Backscattering is suppressed because it would
require flipping the spin, which is forbidden by TRS.
This robustness makes QSHE systems attractive for ex-
ploring topological insulators and potential applications
in low-power electronic devices.

IV. PHOTONIC TOPOLOGICAL INSULATORS.

It should not be surprising that many of the quan-
tum topological effects found in condensed-matter sys-
tems should find their analogues in photonics. After all,

light is a wave, and the above-mentioned topological ef-
fects are merely the consequence of the wave nature of
the electrons.

A. Key differences of photonic and electronic
systems

The major difference in both systems is the basic con-
stituents of both systems - electrons (fermion) and pho-
tons (boson) respectively. Both of them follow different
statistics. Electrons are fermions, obeying Fermi-Dirac
statistics and the Pauli exclusion principle, which re-
stricts multiple electrons from occupying the same quan-
tum state. This results in the formation of energy bands
and dictates electronic behaviours like conductivity and
the quantum Hall effect. The occupation of electron
states follows the Fermi-Dirac distribution, with a char-
acteristic Fermi level. Photons, on the other hand, are
bosons that obey Bose-Einstein statistics. They are not
subject to the Pauli exclusion principle, allowing them
to accumulate in the same state. This enables phenom-
ena like Bose-Einstein condensation and the formation of
coherent light sources (e.g., lasers). In contrast to elec-
trons, photons do not have a chemical potential and can
be freely created or annihilated.

Another significant difference is that the topologically
nontrivial states arise as the equilibrium state for suffi-
ciently low temperatures, and the electric conductivity is
measured under weak or moderate external fields that
do not dramatically affect the underlying many-body
state. This equilibrium or quasi-equilibrium condition is
shared by almost all condensed-matter experiments. Un-
like electrons or atoms, photons are not conserved par-
ticles—they can be absorbed, scattered, or emitted by
the material system. This means maintaining a photon
gas requires constant input from an external light source,
which makes it hard to achieve stable equilibrium states.
photons can reside in any realistic device only for a finite
time and some external driving is needed to inject them
into the system. Photon vacuum is physically empty and
non-interacting, requiring external intervention for any
nontrivial state. In contrast, the electron ‘vacuum’ (filled
valence band) is a structured, stable, and intrinsically
meaningful state

B. Topology in 2D photonic crystal

In Section IIB, we talked about the topology of the
2D electronic crystal. Similarly here drawing parallel
with the electronic crystal, we discuss the band for-
mation, Berry phase, Chern number and relevant top-
ics. For the electronic system, we solve the Schrodinger
equation, similarly, for the electronic system, our eigen-
value problem is microscopic Maxwell equation. For non-
bianisotropic materials with no magnetoelectric coupling,
one can eliminate the magnetic field and write Maxwell’s



equation for a field oscillating at frequency w in the com-
pact form:

V x (071 (r)V x E(r)) = w’e(r)E(r). (16)
where p(r) and e(r) are the magnetic permeability and
dielectric conductivity respectiely. For spatially periodic
systems where p(r) and €(r) are varying periodically in
the system, Bloch’s theorem can be applied. These so-
lutions are labelled by the crystal momentum k and the
band index n. The role of the Bloch wavefunction is
played here by the electric field E,, x(r). Since the equa-
tion involves e(r) multiplying on the right-hand side, we
modify the inner product as:

(E1|Ey) /d rZE

where i,j € {x,y,z}. Similarly, the Berry connection
can be defined as:

r)e; ;(r)Ez;(r), (17)

An(k) = < nk‘vkEn k>
—z/d2 ZE

Starting from the equation for the Berry connection, the
geometrical and topological invariants, such as the Berry
curvature and the Chern number, can be calculated in the
same way as for electronic systems which is shown before.
The Chern number takes non-zero values only when the
time-reversal symmetry is broken in the system.

In the context of the quantum hall effect we recall that
by introducing a magnetic field the TRS was broken,
which led to a non-trivial topology in the bulk. The
fundamental constituents i.e. the electrons have an in-
trinsic charge and hence introduce non-reciprocity in the
system. but in the case of photonic systems, the photons
have no charge and cannot break the TRS. Gyromag-
netic materials introduce off-diagonal terms in the per-
meability making the tensor anisotropic and direction-
ally dependent and hence breaking the reciprocity /TRS.
Gyromagnetic materials consist of a spatially periodic ar-
rangement of material elements, giving spatially periodic
dielectric permittivity €;;(r) and magnetic permeability
;5 (r) tensors. In such a geometry, one can apply to pho-
tons the Bloch theorem originally developed in solid-state
physics for electrons in crystalline solids. Photon states
organize themselves into allowed bands separated by for-
bidden gaps and are labelled by their wave vector defined
within the first Brillouin zone of the periodic lattice.

GU )VkEn,k,j (I‘) (18)

V. EXPERIMENTAL OBSERVATIONS AND
REALIZATIONS

It was Raghu and Haldane (2008, [6]) who initially
put forward the idea of chiral edge states in photonic
systems. They theoretically predicted the existence of
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FIG. 5. Figure shows the structure of the photonic crystal
used as Chern PTI in the experiment by Wang et al [7].

these modes. It was later that Wang et al (2008) experi-
mentally realized the existence of the chiral edge states(
CES). Here, we discuss briefly about the experiment by
Wang et al.

The experimental system shown in Fig 5 involves a
gyromagnetic, 2D-periodic photonic crystal consisting of
a square lattice of ferrite rods composed of vanadium-
doped calcium-iron—garnet in air bounded on one side
by a non-magnetic metallic cladding. The interface be-
tween the photonic crystal and the cladding acts as a
confining edge or waveguide for CESs. The structure is
sandwiched between two parallel copper plates (yellow)
for confinement in the z direction and surrounded with
microwave-absorbing foams (grey regions). Two dipole
antennas, A and B serve as feeds and/or probes for the
vector network analyzer. A variable-length (1) metal ob-
stacle (orange) with a height equal to that of the waveg-
uide (7.0 mm) is inserted between the antennas to study
scattering. A 0.20T D.C. magnetic field is applied along
the z direction using an electromagnet.

To get a nontrivial Chern number, the time-reversal
symmetry has to be broken in the system. It is noted
that the doped ferrite rods used in the experiment have
the gyromagnetic property. An external magnetic field
introduces anisotropy in the magnetic permeability of the
ferrite rod of the form

o —ik 0
pij(r) = [ ic po 0
0 0 py

Here off-diagonal terms depend on x which captures the
effect of the magnetic field and is nonzero only in the
presence of the external magnetic field. The presence of
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FIG. 6. Figure shows the numerical simulation of the photonic
bands of the system in Wang et al experiment. In (a), there
is degeneracy at I' and M in the band structure and in (b)
the band gap arises in those points. (taken from [4])
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FIG. 7. The figure (a) shows the chiral edge state of the PTI.
Figure (b) and (c) shows the propagation of chiral edge state
when conducting barrier is placed in the waveguide. (taken
from [7])

an external magnetic field breaks the TRS of the system,
leading to a nonzero Chern number.

After performing numerical simulations of the above-
said system they found that a gap opens between the sec-
ond and third transverse magnetic (TM) bands (see fig
6). the second and third bands of this photonic crystal
acquire Chern numbers of 1 and -2 respectively. Because
the sum of the Chern numbers over the first and sec-
ond bands is 1, exactly one CES is predicted to exist at
the interface between the photonic crystal and the metal
cladding.

The band gaps and the CES waveguide were charac-
terized using a two-port vector network analysis using a
pair of dipole antennas labelled A and B At frequencies
within the second band gap, it was observed a strong for-
ward transmission, approximately 50 dB greater than the
backward transmission at mid-gap frequencies as shown
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FIG. 8. Figure shows the magnitudes of forward and back-
ward transmission of CES displayed by the VNA. (taken from
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FIG. 9. Figure shows the magnitudes of forward and back-
ward transmission of CES when a conducting obstacle is
placed in the waveguide. (taken from [7])

in Fig8. Over much of this frequency range, the back-
ward transmission was below the the noise floor of the
network analyser, which suggests an even greater ac-
tual contrast. This confirms that backwards-propagating
modes are highly evanescent, as predicted. They also
tested the robustness of the unidirectional propagation
by studying the effect of a large obstacle on transmis-
sion. They gradually inserted a conducting barrier across
the waveguide, blocking the direct path between anten-
nas A and B. The measured transmission behaviour at
different stages of the insertion Fig9 remains basically



the same as that in Fig® the transmission between 4.35
and 4.62 GHz remains strongly non-reciprocal, with a
40-50-dB difference between the forward and backward
transmissions. This finding agrees with the theoretical
prediction that power transmission by means of CESs is
fundamentally insensitive to scattering from arbitrarily
large defects (Fig. 2b).

VI. CONCLUSION AND OUTLOOK

In this paper, we have introduced photonic topologi-
cal insulators (PTIs) by drawing parallels with the well-
known quantum Hall effect (QHE) and explored the role
of topology in governing their unique properties. The fo-
cus was on understanding how PTIs leverage principles
from condensed matter physics, such as topological in-
variants like the Chern number, and adapt them to pho-
tonic systems through innovative approaches like break-
ing time-reversal symmetry using gyromagnetic materi-
als.

Although the paper was mainly focused on chern PT1Is,
there is a different class of PTIs known as the spin PT1Is.
Spin Photonic Topological Insulators (Spin PTIs) are a
class of photonic systems that mimic the behaviour of

the quantum spin Hall effect (QSHE) seen in electronic
systems. In photonics, the role of spin is replaced by
other degrees of freedom such as circular polarization or
modes within photonic crystals. Spin PTIs retain TRS.
The edge states in Spin PTIs are doubly degenerate but
counter-propagating, just like in QSHE.

Due to the robustness of the edge states. The ap-
plications of PTIs are vast. They improve signal in-
tegrity in telecommunications, ensuring minimal losses
even around bends or through imperfections in waveg-
uides. Chern and Spin PTIs provide platforms for fault-
tolerant quantum information processing. They could be
used in topological quantum computing schemes that re-
quire robust manipulation of quantum states.PTIs are
being utilized to create topological lasers that exploit
edge states for robust lasing action.
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